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ABSTRACT 
A recent result of Pisier on K-functionals is exploited in the  context  of 
funct ion  spaces defined from singular integrals. The main consequences 
appear for H ~ spaces on the complex ball (1 _< p <_ oo) and spaces of 
differentiable functions in several variables. It turns out that the complex 
variable arguments used in [PI] may in certain cases be substituted for 
real variable methods, which of course have a wider range of applicability. 
We discuss interpolation of vector valued Hardy spaces on the ball and 
prove that L I (S) /H I (B) satisfies Grothendieck's theorem, similarly as in 
the disc case. 

1 .  I n t r o d u c t i o n  

T h e  a im of this note  is to complement  some of Pisier 's  results  ob ta ined  in the  

recent  papers  [P1], [P2]. T h e  pape r  [P1] deals wi th  in terpola t ion  of the  classical 

H a r d y  spaces H p (1 < p < c~) on the  disc D and non -commuta t i ve  generaliza- 

tions. In [P2], a new proof  is given of several results f rom [B1] and  in par t i cu la r  

the  fact tha t  the  quotient  space L 1 ( T ) / H I ( D )  satisfies Grothendieck ' s  t heorem 

and has co type  2 ( the reader  should consult  [B3] a n d / o r  expos i to ry  work such 

as [P3] for definitions and discussions of these concepts).  Bo th  paper s  [P1], [P2] 

make  crucial  use of  a formal  algebraic l e m m a  which in some sense pe rmi t s  one 

to dualize the  p rob lem of s tudying K-funct ionals .  Let us recall briefly these 

concepts  and  some results  f rom [P1]. 
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Let A0, A1 be a couple of interpolation (Banach) spaces. For z E Ao + AI and 

t > O, let 

(1.1) K,(z, Ao,A1) --inf(llz0[[A o q- t[[Zl[[A,[Z ---- zo "~- Xl,~g0 e Ao,Xl E A1). 

For x E Ao N A1 and t > 0, let 

(1.2) J,(x, A0, A1 ) = max (I]z0 HAo, tl[zl HA, ). 

The (real interpolation) space (Ao, A1)s,r is defined on the space of all z in 

Ao "b A1 such that Ilzlls,r < oo where 

In particular, one has 

(1.4) Lp,, = (Lro,Lp,)0,g 

where 1 < po,pl,q ~_ co, 0 < 8 < 1, l ip  = (1 - 8)/po Jr 0/pl. 
Assume next S is a dosed subspace of A0 + A1 and let 

(1.5) So = S N Ao, $1 = S n A1. 

In [P1], the couple (So, $1) is called K-closed relative to (Ao, A1) if there is a 

constant c such that 

(1.6) V t > 0 ,  Vz G S0 -~- S1 : K~(z, SO,S~)<_cKt(s, Ao,A1). 

The lemma we were referring to above is the following fact: 

LEMMA 1.7 (see [P1]): Assume Ao N A1 dense in Ao and in A1 and assume there 

is a subspace s C Ao N A1 which is dense in So with respect to Ao and in S1 with 

respect to A1. Then (So, Sl) is K-closed in (Ao, A1) i¢ (So ~, S~) is K-closed in 
(A~,A~). 

Let us sketch the argument for completeness sake. 

If (S~, S~) is K-closed in (A;, A~), then there is an inequality 

(1.8) Z,(x,  So~,S~) <_ cK,(z,A~,A~) for z e S~ + $1 £ 
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which by duality implies that there is the following simultaneous lifting property: 

V~>O, V x E Q o N O l ,  3 5 E A 0 n A 1  
(1.9) 

such that Jt( .~,Ao,A,)  <_ cJt(z, Qo,Q,1) 

denoting Q0 = Ao/So, Q1 = A~/S1 the quotient spaces. We have to show (1.6), 

where c refers to some constant. Take x = so +sl  E So+S1 with a decomposition 

Z = Z 0 "~-Zl ,  ~0 E Ao, Z l  E A1 and 

(1.10) IlxollAo + tllxlllA , _< 1. 

Write zo - so = sl - zl = y E Ao n A1 for which, obviously from (1.10), 

(1.11) II~llQo + tl l~llq, -< 1 

using the notation ~ for the quotient element. Hence Jt(y, Q0,Q1) ~ 1 and 

property (1.9) yields a vector z E A0 N At satisfying 

(1.12) y - z E So N St; J,(z,  Ao,A1) <_ c. 

It follows from the preceding that 

(1.13) x = (~o - z) + ( ~  + z )  = (so + y -  z) + (st - y + z )  =- st + s t  

which is an So + $1 decomposition of z where, by (1.10) and (1.12), 

(1.14) IIs~llAo +tlls~llA, _< (IIx011Ao +tl lx~llA,)+ IIzlIAo +tllzllA, --< 1+2c .  

Consequently 

(1.15) K,(x ,  So,S~) _< 1 +2c  

completing the argument. 

In [P1], another proof is given of P. Jones's interpolation theorem [J] based on 

the previous device. The more delicate (and interesting) aspect of that result is 

when H °° = H°°(D)  appears as an endpoint, thus 

(1.16) H" = (H "°, H°°)e,,, 1 <_ po < P < oo, l i p  = (1 - e)/po 

(in the real case, which is the only one we will consider here). 
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With the notations from (1.7), 

A0 = LP°(T) ,  A1 = L ° ° ( T ) ,  So = HP°(D), S1 = H°°(D). 

The K-functional problem is then reduced to the corresponding problem for 

the couple (SoJ-,s~) which in this case identifies with (HP'o(D),HI(D)), P'o = 

po/(Po -1) .  Proving that (Hq(D), H 1 (D)) is K-closed in (Lq(T), L 1 (T)) is achiev- 

ed in [P1] by invoking complex variable techniques, such as factorization. Our aim 

here is to substitute that part of the proof by real variable methods, leading to 

K-functional inequalities and interpolation results for the LP-closures of function 

spaces which L2-orthogonal projection is given by a Calderon-Zygmund type 

kernel on a homogeneous domain. The most interesting case will be that of the 

HP-spaces on the ball: 

THEOREM 1: Let 1 <_ Po < P < p~ <_ c¢ and 1/p = (1 - 8 ) / p o  + 0/pl. Then 

denoting HP(B) the Hardy space on the complex unit ball B of C a, one has 

(1.17) HP(B) = (H p° (B), H pl (B))o,p 

and for l <_ q <_ oo 

(1.18) HP,q(B) = (HP°(B), HPL(B))0,q. 

The argument will only use real variable techniques, i.e. the geometry of the 

boundary, and may be rewritten for strictly pseudo-convex domains. 

It should be mentioned that the truly new information consists in the K- 

functional inequalities. The interpolation phenomena were essentially known to 

the author and also to S. Kisliakov. Kisliakov worked more specifically on the 

HP-spaces HP(D 2) on the bidisc D ~ = D x D (cf. [Kis]) which in fact is a more 

difficult case than the ball. For instance, certain interpolation results involving 

p = oo are known in the bidisc case, but at this point no K-functional inequalities 

in the sense of (1.6) relating to H°°(D2). In the polydisc case D r, r >_ 3, no 

interpolation results relating to H~°(Dr) are known. (See also [Kis] for more 

details and applications.) 

In [P2], a new proof is given of the results on absolutely summing operators 

on the disc algebra A(D) and H°°(D) from [B1]. These results are derived from 

certain inequalities of the form 

(1.19)  q(u) < c,  ( )°llull ' - °  
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where u : A ~ Y is a 2-summing operator on A = A(D) and 2 < q < co. 

The proof of (1.19) is obtained from interpolation properties of the vector-valued 

H°°-spaces H ~ ( D )  (2 < p < co) on the disc. Such interpolation results and also 

(1.19) fail if one replaces D by the ball Br, r >_ 2 or the polydisc D r (r > 2), 

although the problem of Grothendieck property and cotype for the dual spaces 

A(Br)*, A(D~) * is presently still unsettled. The previous considerations will be 

elaborated later on in the paper. They consist in fact just in recalling earlier 

work ([B2], IS3], [B4]) on the behavior of linear operators on these algebras. 

Using the method of [P2], Xu proved that quotient spaces L I (T r ) /H  1 (Dr), r = 

2 ,3 , . . .  satisfy Grothendieck's theorem, analogously to L I ( T ) / H  1 ([Xu]). His 

argument is a nice combination of various techniques in vector-valued harmonic 

analysis developed over recent years. In the last section of the paper, we will 

extend his result to the complex ball B2, thus 

THEOREM 2: L2(S)/HI(B2)  has Grothendieck's property (i.e. linear operators 

acting on this space and ranging in 6 2 are 1-summing). 

Observe that  for r >_ 2 the spaces LI (Tr ) /HI (D  r) (resp. LI (S ) /HI (Br ) )  do 

not appear predual of g=(Dr) ,  reap. H=(Br). 

It is conceivable that the [P2] approach may permit one to progress on the 

absolutely summing operator problems related to other spaces, such as the space 

Wl,°°(T 2) of functions on T 2 with bounded gradient (private communications of 

S. Kisliakov, 2/91). 

2. P r o o f  o f  T h e o r e m  1 and Genera l i za t ions  

The argument may in fact be presented with a level of abstraction similar to that 

of Lemma 1.7. 

The main lemma may be formalized for spaces of homogeneous type X, d,/~ (X 

= topological space, d = quasi-distance, # _> 0 a finite Borel measure) in the 

sense of Coifman and Weiss (see [C-W]). Denote S a function space of bounded 

measurable functions on X and Sp (1 _< p _< co) the closure of S in LP(/~). 

Assume the orthogonal projection on $2 is given by a Calderon-Zygmund type 

kernel, i.e. 

(2.1) P f ( x )  
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where K satisfies the well-known condition 

(2.2) / IK(x,y)  - K(x ,  Yo)l/~(dx) < c 

X\B(yo,2r) 

wherever 

(2.3) Y0 E X, 

LEMMA 2.4: For t 
(LI(~), L~(~)). 

r > O, y e B(yo,r) = (y e X I d(y0,y) < r}. 

Isr. J. Math. 

Proof: Let s e S have the decomposition s = f + g  where Ilflla ÷tllgllp _< l ( t  < 

1 , f  E LI ,g  E LP). Put A = t - f  and make a Calderon-Zygmtmd decomposition 

of f as f = h +  k where 

(2.5) Ihl < A; 

k = ~ i> lk  i where to each j a ball B i may be associated such that 

(2.6) Ep(Bj)  < c II~l_._..i = cA-l,  

(2.7) supp kj C Bj, 

(2.8) f kj = 0, 

(2.9)  ll jlla < c 

(c refers to a constant depending on X). The construction is well-known (based 

on the VitaIi-covering property). 

Write 

(2.10) 8 = (g + h) + k = P(g + h) + Pk.  

Since P is given by a Calderon-Zygmund kernel, P is L p - L p bounded for 

1 < p < oo and thus 

(2.11) IIP(g + h)llp < Ilgllp + Ilhllp < t-1 + Ilhllll/Pllhll~ p' < t-1 + cA1/P' = ct-1 

> 0,1 < p < oo, the couple (S1,Sp) is K-closed in 
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using (2.5), the estimate Ilhll~ < Ilfll~ + Ilkll~ < c a n d  the choice of A. It remains 

to estimate [[Pk[[1. Define f~ = UB~ where B~ refers to the doubling of B i ( = 

same center yi, double radius). Write 

(2.12) lIPkll, _< IIP(k)x, ll~ + liP(k), xx\ , l l , .  

Estimate the second term of (2.12) as 

~"~llP(kilXx\,;lll = ~ J 
i i x \~;  

< ,~ ~ Ilkjll, 
J 

< c  

[ / ki(y)[K(x , y) - K(x, yj)]dy[dz 

Ig(z, y) - g (z ,  y~)ldz / dy 
J 

using successively (2.8), (2.2), (2.9). 

The only point which is not entirely straightforward is the bound on the first 

term of (2.12). Here we use (2.10) and write, using HSlder's inequality, 

(2.14) P(k) = k + (g + h) - P(g + h), 

(2.15) IIe(k)x~ilx ~ Ilkllx + #(£)1/p' [llg + NIp + I[P(g + h)llp]. 

Next, apply (2.9), (2.11) to get from (2.15) 

(2.16) IIP(k)x~ II, < c + c~-',u(£) ' /¢.  

Here /z(•) < Ep(B~) < CEp(Bj) < CA -I ,  by (2.6), so that (2.16) also is 

bounded. 

Hence (2.10) yields an appropriate decomposition of s in Sp + S1 in the sense 

that Kt(s, $1, Sp) < C, for some constant C. This proves the lemma. 1 

Next we recall T. Wolff's interpolation theorem [W] in the real case. 
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THEOREM 2.17 (see [W], Th. 1) : Let Az, A2, A3, A, be quasi-Banach spaces sat- 

is[ying A1 NAa C A2 N A3 and suppose [A1, Aa]o,q = A2, [A2, A4]~,~ = A3 where 

0 < 0 ,  ¢ < 1 ,  0 < q , r _ < c o .  Then 

A2 = [A1, A4l~,q and A3 -- [A1, A4l~,r 

where 
e¢ ¢ 

¢ -  1 - e + e ¢ '  ~= 1 - e + 0 ¢  
Coming back to the proof of Theorem 1 and applying (2.17) in the He(B) 

scale, it clearly suffices to consider pairs 

(2.18) (1,pl) Pl < co, 

(2.19) (Po,co) Po > 1. 

The Cauchy projection for the ball Bd is given by the kernel K(x,  y) = (1 - 

(x,y)) -d, x E Bd, y E OBd -- ~d -1 .  Endowing 22a-z with the non-isotropic 

distance d(z, y) = I1 - (x, u)lZ/2, a homogeneous space is obtained and K(z ,  y) 

is a (generalized) Calderon-Zygmund type operator, satisfying in particular (2.2). 

These facts are classical and we omit references. Applying Lemma 2.4 a first time, 

it follows that 

(H~(B),HP'(B)) is K-closed in (L~(~),LP'(~)) 

for p~ < co. The application is immediate here. From (1.3), one concludes (1.17), 

(1.18) in case (2.18). 

The case (2.19) is treated by Pisier's Lemma. Thus the statement 

(2.20) (HPo(B),H°°(B)) is K-closed in (LVO(~),L°°(~)) 

gets reduced to 

(2.21) (HP°(B)±,H°°(B) ±) is K-closed in (LP~(~),LI(~)). 

Here HP(B) ± stand for the subspace of elements f e LP'(r~) such that if,  g) = 

Is f.Oda = 0 whenever g E H v. The orthogonal projection on H2(B) ± is given by 

Id-K, satisfying (2.2) equally. Observe that for p > 1 the space HV(B) ± appears 

as closure in LV'(r,) of ¢oo(2) n H(B) ± using, for instance, Poisson convolution. 

This provides an appropriate dense subspace S, such that H°°(B) ± = $1 and 

HP°(B) ± = Sp, ° (1 < P0 < co). (2.21) then follows from Lemma 2.4 again. 
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Remarks: 

(i) It is clear that the previous considerations only rely on the geometry of the 

boundary of the domain and consequently the unit ball Bd C C d may be 

replaced by a strictly pseudo-convex domain. 

(ii) The question whether (gl(Bd),  g°°(Bd)) is K-closed in 

(Ll(~2d_l),L°°(~2d_l)) for d_~ 2 

is left open from the previous argument. 

(iii) The arguments used in [J] and [P1] to characterize H'(D)  as the com- 

plex interpolation space [H1, H°°]e are different, but both of them involve 

vector-valued Hardy spaces. At present, it is not clear to the author how 

to deal with the HP(Bd)-spaces, d >_ 2, when p = oo appears as endpoint. 

As will be observed later, vector-valued H°°-spaccs on the ball may behave 

differently than in the disc case and, particularly, the method of [J] is not 

applicable. 

(iv) There are a variety of other models where the method of proving Theo- 

rem 1 applies equally well. For instance, one gets a simple proof of fol- 

lowing real interpolation result for the Sobolov spaces, due to De Vore and 

Scherer [DV-S] (the corresponding result for complex interpolation is open, 

cf. [J2]). 

THEOREM 3: Denote for d > 1 and 1 < p < oo by W I'p(T d) the closure of the 

trigonometric polynomials on T d under the norm 

(2.22) [[Vf,[ ,-( i=~l[Oif[,~) 1/p 

where Oi stands for the ith partial derivative (assume f f = 0 for simplicity). 

Then 

(2.23) WI,P(T d) __. [WI'I(Td), Wl'°°(Td)]o, p 

where 1/p = 1 - O. 

Identify the space WI,p(~ d) with the subspace S v of the *P-sum of d copies of 

Lv(Td), through the norm definition (2.22). Thus 

S v = { (01f,...,Oaf)lf e WI'P}. 
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For p = 2, the orthogonal projection is given by 

(2.24) ;=, ,...,E:;=, ,/ 

where ~ = ( 6 , . . . ,  ~d) ~ Zdl(O} and " (resp. " ) stand for Fourier (resp. inver~ 
Fourier) transform. The Fourier multipliers appearing in (2.24) are well-known 

to define convolution operators of Calderon-Zygmund type. One then follows 

the same scheme as for Theorem 1. A similar argument may also be given for 

higher order derivatives. The [DV-S] method has the advantage however of being 

constructive. 

(v) The interpolation properties of the vector-valued scale H~(D)  (1 < p < 

oo) fail if one replaces D by the ball Ba, d > 2 (on the polydise). The key 

ingredient appears in [B2], [B3], namely the following lemma. 

LEMMA 2.29 (see [B3]): For 0 < * < 1, n = 1 ,2 , . . . ,  there are 1-bounded 

homogeneous polynomials {pj}jn=x on B, d(pj) = degree (pj) = N;, for which 

the sets {( E ~l IP;(ff)l > ,} are disjoint but II ET=l IqJl Iloo > cn, whenever 

{q;};~l is a sequence in H°°(B) satisfying IIP~ - q¢l[oo < c (1 < j < n). 

Here c > 0 is numerical (or depending on dimension d) and {N; } is any rapidly 

enough increasing sequence. 

From this, it is easily seen that H ~  (2 < r < oo), for instance, does not 

interpolate between H ~  and H ~ .  Take e = n -1/r in the lemma, so that 

(2.25) II{pJ};"=~lln~. -< 1. 

n If {qJ}j=l is an approximating sequence in Ht~ , in the sense that 

(2.2t3) lips - q;lloo < c (1 < j < n), 

the previous lemma asserts that 

(2.27) I I {PJ  - q#};%111u~ >-- n - 1 / 2 1 1 { P j  - -  q;};%lllH~ > cn~/2-'/" 

is unbounded when n ~ oo. 

Interpolation properties of vector-valued nature are closely related to the be- 

havior of absolutely summing operators on H°°(D), cf. [B1], [B2], [B3], [P2]. In 
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[B4], an example is given of a bounded linear operator u : H0O(B2) ---} £P (2 < 

p < oo) which has no extension to L0o(E) and in fact is not absolutely summing. 

(For ¢ = 2, the problem remains open.) The example also shows the failure of 

(1.19) if the disc is replaced by the complex ball. 

3. P r o o f  of  T h e o r e m  2 

The general method is that used in [P2]. Denote 7-[ °0 the annilator of H ~(B). 

We prove the following 

PROPOSITION 3.1: If  Y is a Banach space, 2 < q < oo, and u : Tl0o ---} Y a 2- 

summing operator, then the following inequality holds for the q and 2-sumrning 

nor.rl2s o f  I~ : 

(3.2) . q ( u )  < ° • 11 II 

where l lq -- 0/2 + (1 - 0)/c~ and C a constant. 

It follows then from Proposition 3.1 that any linear operator from 7"/°o into 

a Banach space of cotype 2 (and with bounded approximation properly, say) is 

2-summing. In particular, the spaces L 1/H ~ (B), (7"(°°)* satisfy Grothendieck's 

Theorem, i.e. 

(3.3) £(L 1/H 1 (B), ~2) = II1 (L ~ /H  I (B), ~2) 

and are of cotype 2. 

As in [P2], (3.2) is deduced from the interpolation inequality 

o 1 - 0  
(3.4) ]]fllL'/H'(m <- CIIfIIL,/H,(t~)]IflIL,/H,(~) 

where 1 < p < 2, 1IV = 0/2 q- (1 - O)/1, f e L1/HI(£P). 

This last inequality follows (using the duality lemma [P2, Prop. 1]) from 

PROPOSITION 3.5: There is a constant C such that for all t > 0 and f 6 H i, (B)+ 

H~,(B), we have 

(3.6) gt  (f,H~,(B),H~,(B)) <_ c g t  ( f ,L~,(S) ,LI , (s ) ) .  

The rest of this section is devoted to the proof of (3.6). We will use the 

1-variable result, i.e. Prof. 2 of [P2], together with real-variable techniques. 
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Parametrizing ~ E S = OB 2 as ( = (.v/Pe2~ri°, 1V/l-'~e2'ri'P), the surface element 

da is given by d(r = dpdOd¢. If f 6 H~(B), there is the representation 

(3.7) f = Z Pk f  
k>O 

where Pk is the orthogonal projection on the (k + 1)-dimensional space of homo- 

geneous polynomials of degree k, i.e. Wk = [zJwk-J[O _< j _< k]. Letting Pk act 

on L2(S), one has 

f f(r/)((, rl)ka(drl) 
(3.8) P k f ( 0  = f l(1,n)l~ka(d? ) =(k+l)/f(e)(¢,e)~(d~). 
We introduce a system of (smooth) diadic multipliers, similarly as in the disc 

Case 

Thus the r th multiplier C (r) is essentially supported by the r th diadic interval 

and they form a partition of unity of Z. Define the operators 

(3.9) Q = Q(r~ = ~ ]  c~Pk .  

We investigate first the properties of the corresponding kernel-function, which 

we also denote Q(~, q). Thus from (3.8) 

(3.10) Q(C,r/) = E ( k  + 1)Ck(C,r/) k, 

and using the above parameterization, 

(3.11) Q(C, 1) = ~ ( k  + 1)C~p~/~e2"i~t 

Assuming the multiplier C (r) sufficiently smooth, one clearly has the following 

pointwise estimates (denoting N = 2 r) : 

(3.12) IQ(C,DI < N2(1 - p)m,,  
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IQ(C1)I < IOl-'°lla}'°){(t + 1)C, PU2}IIL,([N/=,2~],~O 

(3.13) < [01-1o su__Pe(N)i(1 _ p) jp. /4 < N-Sl01-,o. 

0_<p_<l 

Denote as usual d(~, b) -- I1 - (a, b) l 'n  the non-isotropic distance. Thus 

(3.14) d(( ,  i )  = 11 - ¢,I ' n  = I1 - ~/~e2"'°l '/~ --, (1 - p)'12 + 101'n. 

It follows then from (3.12), (3.13) that if d(~ , ! )  > A/v/d,  A >_ 1, then 
IQ(¢,DI < A-I"N2. Hence, by invariance under unitary group 

(3.15) d(~,~/) > AlvIN =~ I Q ( ¢ , ~ ) I  < Nz" A- 'e.  

In follows in particular that Q extends to a bounded operator on all LP(S)- 

spaces (1 < p < oo), but the more precise decay estimate (3.15) will also be of 

importance later on. 

Recall also the Poisson kernel P(z,~), z E B2, ~ E S, 

(1 - I z l ~ )  2 

(3.16) P(z,~) - I1 - ( z , 0 1 4  

Thus if 1 - Izl ,.. 1/N and d((, z) > A/v"-N, there is the estimate 

(3.17) P(z,¢) < g -2 ( A S ~  - '  = N 2. A -s 
\ g  4 ] 

Returning to the problem of proving (3.6), assume 

(3.18) f ( ( )  = r(1)(() + rO)(¢), ¢ E S 

where F (0 e L],(S) and 

(3.19) ]IF(l) [IL~ ' _~ 1, 

(3.20) lIFO)IlL 5 _ t -~. 

Taking z E OD one has, following decomposition of the slice function re, 

(3.21) f d z )  = FO)(z~) + F(~)(z~). 



178 J. BOURGAIN Isr. J. Math. 

At this point, use Prop. 2 of [P2], thus the fact that (H~, (D), H~2 (D)) is K-closed 
in (L},(S), (LI~=(S)). This yields a new decomposition 

(3.22) re(z) = GO)(¢,z) + O(2)(¢,z) 

preserving analyticity in z E D and where, for ¢ E S, 

(3.23) IIG(')(¢, ")IIH,',(D) < Or0' IlFm(e2'~'° ¢)ll,,d ¢ 

(3.24) IIV(2~(¢, ")ll~,,,w~ < Cfo' 

Integrating (3.23), (3.24) over ( e S, one gets from (3.15), (3.20) 

(3.25) IiG(')llL, ¢m(s ) < C, 

(3.26) IIG(2)IIL~(~)(S) < Ct -1. 

Exploiting z-analyticity and the Stein tent-space multipliers acting on Hi(D), 
one finds a splitting (using previous notations) 

(3.27) O@)f(z() = G(~I)(c, z) + G(~2)(¢, z), r = 0,1, 2, . . .  

where {G(rl)}, {G7 )} satisfy the square function estimates 

(3.2s) I1 (~  o) 2 ,/~ tG,. I ) II~],(s,,~ < c, 
r 

(3.29) I I (~  IG~2~l=)'/~ll~b(s×~ < ct-'. 
r 

Next, eliminate the z-variable, defining 

(3.30) gi(() = Gi~((e -2rio, e2"i°)dO 

From (3.27), (3.28), (3.29), one gets 

oo 

(3.31) / = ~ h ;  h = Q ( ~ / =  9P ) + g~=), 
r~-O 

(i = 1,2). 

r = 0 , 1 , . . . ,  
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(3.32) 

(3.33) 

I N T E R P O L A T I O N  

I1(~ ( , )5 ,/~ Ig, I )  IILh(s )<c,  

(2) 2 i/2 I1(~ Ig~ I ) IlLs(s) < ct-X. 
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where 

(3.36) Xi is indicator function of a set Ui C S, the {Ui} are disjoint, 

diam Ui < 6 . 2  -r/2 and a(Ui) ~ 4-~; 

(3.37) Pi(~) = P(zi ,¢)  where 1-1z~l = ~.2 -r  and u~ c B(z.6.2-~/2). 

T h e  number 0 < g < 1 will be some sufficiently small constant. More specifi- 

cally, ~ is chosen such that (we leave details to the reader) 

(3.38) II(X- K(r))Q(~)ll~-.oo < 

where e > 0 will be specified later. 

Fix r. One has from (3.34) 

(3.39) f ,  = Q[I - ( I  - K ) Q I - I  K.f,.. 

Hence, by definition of K and using a Neumann-series expansion for the inverse, 

(3.40) h = Z ( h , P i ) Q [ ( I  - K)Q]i(Xi)  = ( h , P i ) x i j  
j=0  " j=0  

It is, of course, our aim to replace the g(i) by analytic functions. 
Assume Q(r) redefined such that 

(3.34) Q(r) f,. = f r  

(by taking a bit larger bases). 

Next define for each r an operator K = K (r) essentially appearing as an 

expectation operator for a partition of S in sets of non-isotropic size ,,~ 2 -r/2. 

More precisely 

(3.35) K f = Z ( f ,  Pi)x ,  
i 
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where 

. ( r )  
(3.41) Xii = xii = Q[(I - g)Q]ixi 

is an analytic polynomial in the space [W~; k .~ 2r]. 

We establish some properties of Xij for later use. First, from (3.38) 

(3.42) Ix~jl < ,i. 

Observe that as a consequence of (3.17), there is the decay estimate 

K(~, 77) < c~N2A -s if d(~, 7?) > AN -1/z (3.43) 

on the kernel 

(3.44) 

Isr. J. Math. 

(N = 2") 

K(~, rl) = E P(zi, r/)x/(¢). 
/ 

This operator has L 1 - L  1 and L ° ° - L  ~° bounds by some constant ( i n d e p e n d e n t  

o f  6). Write 

Q[(I - g )Q] i (¢ ,  7) = 

(3.45) / Q(¢,~1)(I-  K)(~I,~2)Q(~2,~a)(I- K)(~a,~ , ) . . .  Q(~2/,r/) 
e l  

S x . . . x S  

and use (3.15), (3.43) to get the decay estimate 

(3.46) IQ[(I-  g)Q]i(~,r/)l  < CJC6A-SN 2 if d((,r/) > A/Vr-'N, A > 1. 

Here C is a numerical constant. 

Consequently, by (3.41) 

(3.47) [Xii(~)[ < CiC~ A-8 provided d(¢, zi) > A/Vr"N 

and using (3.42), writing [Xij[ = [Xij[ 1/s [Xij[ Vs, a suitable choice of e gives 

(3.48) [Xii(~) < IO-JA-'  provided d(~,zi) > AlvIN. 

We come back to (3.40). Choose some number % 

(3.49) 0 < 7 < 1, 
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sufficiently close to 1 (to be specified). Recall (3.31), 

(3.50) f r  = g(1) + g(2), 

which are vector-valued functions (ranging in sequence space), which s-coor- 

dinate is denoted .Tr, s,g'.,s" (i) (i = 1,2). Since f'.,° is holomorphic on B, it follows 

from subharmonicity that 

(3.51) (If'.,,l',ei) > If'.,,(zi)l" 

and hence, by (3.50), 

(2) 7 (3.52) I(fr, aPi)] <2( ( ]g(1)] ' ,P i ) ) l / '+  2((]g'.,s I ,Pi)) 1/" 

Therefore, one may find complex numbers a'.,s,i ,(1) a'.,s,i(2) bounded by 2 such that 

= _(1) ((Iga, 7 1/7 + _0) ~, r" Jf(lg('2)l"Pi>~ 1/, (3.53) (f'.,s,Pi) Ur, s,i ttr, s,i • 

Substitute (3.53) in (3.40) to get the decomposition 
o o  

(3.54) ~7"X"a  ( 1 ) . ~  a,,, (Ig(~)l,'Pi) Xij+/_~/_.~ ".,s,, (Ig'.,,I ,Pi) Xiy. 
j=0 i j=0 i 

Here both systems {Pi}, {Xij} depend on r. Summing over r yields the following 

analytic decomposition of {f~} = f = f0)  + fO) where 

( 3 . 5 5 )  f ~ X )  ~r (~j ~i sT(l) ,la(1)17 ~(r),l/Tx/!r) I 
, -- ' .~$~1~1~' . .$ I ' " t / At . /  ' 

• --r,s,i~l~r,s I , "  m l Aij • 

We estimate II.f(1)lln~, and IIf(2)llHs. Because xij" (') ~ {Wk;k ~ 2"], one may 
introduce square functions and 

[ ' ' (1)"L)I"~ It ~ia(r~2'i(lg(r~2lT'e(r))l/'xl;)12 
3 

(3.57) < ~ / V ' / i , ( i ) ,  p(')~ ~('.) , /  / ~ , , - r , s ,  , i ,,~,j | / / 

= (1) 7 p ( O  ( 0 7  . 

i " ~ i l l ,  
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.(1) Denote p = 1/7 > 1, q = 2/'), and u~,~ = ~r,~ • 

Consider the individual sums 

(3.5S) 
i 

on which we make a pointwise estimate. 

From (3.48), there is the decay estimate 

(3.59) < 5-J.  A -6 provided 

(choosing 7 close enough to 1). 

Isr. J .  Math .  

d(~, zi) > AlvIN, A > 1 

Fix a point ¢ E S, d(¢, zi0) "~ 1/v/-N for some i0. If A > 1 ranges over dyadique 

numbers, the contribution 

(3.60) E <u",s'P(r))lXl[ )I'Y(¢) 
d( z, ,Z~o )~ A / vr'R 

is easily seen (using (3.59)) to be bounded by 

a (B(1 ,A/v~))  

d( z~ ,zlo )~  A / x/" ~ f f  

where u*(~) stands for the Hardy-Litt lewood maximal function of u (with respect 

to the non-isotropic structure). Hence (3.60) is bounded by 

(3.62) 5-iA-2u*,s(¢) 

and (3.58) is bounded by C .  5-iu*,a(~), summing (3.62) over A. Substitution of 

this in (3.57) gives the bound 

/ \ 1/q p 

(3.63) j~.  5 - j  I ~  (u*'')') L,," 

Since there are no 1, co endpoints, (3.63) is further bounded by 

by definition of ur,, and inequality (3.32). The passage from (3.63) to the left 

member  of (3.64) results from a classical vector-valued maximal inequality for 

mixed-norm LP-spaces (or, more generally, UMD-lattices, cf. [Bb]). 

The estimate on IIf (2) IIH~ is completely similar and (3.33) implies IIf (2) IIx~, < 

ct -1, completing the proof of Proposition 3.5. I 
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A p p e n d i x :  T h e  Q u o t i e n t  Spaces LI(T)/HI(D) a n d  LI(S)/HI(B,,,) a r e  

N on- i s omorph i c  B a n a c h  Spaces (m > 2) 

This question appears rather naturally from the proof of Theorem 2 in the paper 

and there is also the known fact that H~(D) and HI(B,n) are isomorphic spaces 

(which is not true in the polydisc case). This H~(D) - Hi(B,,,) isomorphism 

may not be extended, however, to the corresponding Ll-spaces. 

The proof of the claim made in the title of the appendix is of infinite-dimen- 

sional nature. Here are the ingredients: 

(i) Let s : LI(T) /H 1 --* LI (S) /H ', t : L I (S) /H 1 ~ LI (T) /H 1 be inverse 

isomorphisms. Then there are liftings ~, t 'making the following diagram commute: 

LI(T) ~ --, L~(S) --, L~(T) 
q J, q ' l  q l  

LI(T) /H 1 -5 LI (S) /H 1 ~ LI (T) /H 1 

where q, q~ are the quotient maps. The only point to observe here is that in 

constructing the liftings using at the end compactness (naturally giving rise to 

operators ranging in the space of measures), one ends up with Ll-functions. The 

reason for this is that  HX(D) (resp. gx(B))  is w* -closed in M(T)(resp. M(S)). 

(ii) Let T : LI(#) ~ Ll(v) be a bounded operator and T* its adjoint. Then 

there is a measure v~ << v such that T* extends from Ll(v~) to Ll(p). In fact, 

we may take 
dv~ 

= s u p  IT~[ .  
dv ~EL¢~(~),I~I_<I 

The argument is routine. 

(iii) Apply (ii) repetitively to the operators ~, t from (i). Thus p0 = a (invari- 

ant measure on T), v0 = a'  (invariant measure on S) =~ yt on S such that  (.~)* 

is ux - p0 bounded (may take v~ << a',dv~/da' > 1). Since t" is v~ - a bounded 

=~ Pl on T such that  (t)* is p~ - ul bounded (#1 << a, dpl /da > 1). Then $ is 

Pl - a ~ bounded =~ v2 on S, etc. 

At each state 

(~)* is v1+1 - P J  bounded, 

(t')* is #i - v1 bounded. 

Obviously, the norms of these measures grow at most exponentially. 

defining for a suitable constant C (depending on ]I~H, IIt'll) 

. = E E 
i>o  1_>o 

Hence, 
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on T, S respectively, 

(g)* gets a bounded extension ~: L~(S,v) ~ L~(T,#), 

(t')* gets a bounded extension t :  L 1 (T, #) ~ L 1 (S, t,). 

Moreover p << a, u << a'  and d#/da, du/da' >_ 1. 
Denoting 

Ar = (Hi(D)) "L, As = (Hi(B)) ± 

the annilators and 

AX(T,#), AI(S,v) 

their respective closures in LX(T,v),LI(S,v), the ~llowing diagram is clearly 

obtained: 

L~(S,v) ~ LI(T,p)  -~ LI(S,v) 
/ / / 

A~(S,u) ~ AI(T,p)  i AI(S,v) 
{ o ~ =  Id 

(iv) Clearly H'(D) ± = H~°(D) and A ' (T ,p )  is the closure in L ' ( T , p )  of 

{eUr i ,  0, n < 0}, which as a Banach space is isomorphic to the usual H 1 (T) space. 

This is because of the properties of # (see [Pe]): 

# < < a  and ~ 1 = ~  log ~ > - c ~ .  

T 

On the other hand, A ~ (S, u) contains the L ~ (S, v)-closure of the linear space 

[ Izl¢; j >__ 0} {Izl j 
S 

which is of codim 1 in the Ll(u)-closure of 

(*) (Izl j IJ ~ 0}. 

Since ( , )  is a real algebra, the closure in Ll(v) is an Ll-space and hence Ax(S, v) 
contains L 1 as a subspace. The conclusion is that one would get a factofization 

of the identity on L 1 through H 1, which is of course a contradiction. 
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